Neurons in the ventral spinal cord are more depressed by isoflurane, halothane, and propofol than are neurons in the dorsal spinal cord.
نویسندگان
چکیده
BACKGROUND Volatile anesthetics act primarily in the spinal cord to produce immobility but their exact site of action is unclear. Between 0.8 and 1.2 minimum alveolar anesthetic concentration (MAC), isoflurane does not depress neurons in the dorsal horn, suggesting that it acts at a more ventral site within the spinal cord such as in premotor interneurons and motoneurons. We hypothesized that isoflurane, halothane, and propofol would exert a greater depressant effect on nociceptive responses of ventral horn neurons when compared with dorsal horn neurons. METHODS Rats were anesthetized with isoflurane or halothane and responses of dorsal (<1200 microm deep) and ventral (>1200 microm) lumbar neurons to noxious mechanical stimulation of the hindpaw were determined at 0.8 and 1.2 MAC. In a third group anesthetized with isoflurane at 0.8 MAC, we administered 5 mg/kg propofol while recording responses from dorsal horn or ventral horn neurons. RESULTS Dorsal horn neuronal responses were not significantly affected when either isoflurane or halothane was increased from 0.8 to 1.2 MAC; propofol also had no significant effect. On the other hand, with increased isoflurane or halothane concentration, responses of ventral horn neurons were depressed by 60% and 45%, respectively. Propofol profoundly depressed (>90%) ventral horn neurons. CONCLUSIONS These data suggest that, in the peri-MAC range, isoflurane, halothane, and propofol have little or no effect on neuronal responses to noxious mechanical stimulation in the spinal dorsal horn but depress such responses in the ventral horn. Immobility produced in the 0.8-1.2 MAC range by these anesthetics appears to result from a depressant action in the ventral horn.
منابع مشابه
Immobilizing doses of halothane, isoflurane or propofol, do not preferentially depress noxious heat-evoked responses of rat lumbar dorsal horn neurons with ascending projections.
BACKGROUND The spinal cord is an important site where volatile anesthetics decrease sensation and produce immobility. Beyond this knowledge, our understanding of a site of anesthetic action is limited. Previous evidence suggests that dorsal horn neurons with ascending projections may be more susceptible to depression by general anesthetics than local spinal interneurons. In this study we evalua...
متن کاملVolatile anesthetic effects on midbrain-elicited locomotion suggest that the locomotor network in the ventral spinal cord is the primary site for immobility.
BACKGROUND Volatile anesthetics produce immobility primarily by action in the spinal cord; however, anesthetic effects among different neuronal classes located in different spinal regions, and how they relate to immobility, are not understood. METHODS In decerebrated rats, effects of isoflurane and halothane on movement elicited by electrical microstimulation of the mesencephalic locomotor re...
متن کاملPeri-MAC depression of a nociceptive withdrawal reflex is accompanied by reduced dorsal horn activity with halothane but not isoflurane.
BACKGROUND Anesthetics act in the spinal cord to suppress movement evoked by a noxious stimulus, although the exact site is unknown. METHODS This study investigated sensorimotor processing in hind limb withdrawal reflexes, and effects of two general anesthetics, halothane and isoflurane, on simultaneously recorded responses of single dorsal horn neurons and hind limb withdrawal force, elicite...
متن کاملGalloping in full pursuit of the mechanism of anesthetic immobility.
THE pharmacology of general anesthetics is the essence of anesthesiology, and the quest to understand how volatile anesthetics work has occupied anesthetic pharmacologists for more than a century. Immobility in response to a painful stimulus, usually an incision in the clinic or a tail clamp in the laboratory, is used as a measurable endpoint for quantifying anesthetic potency that is much more...
متن کاملThe Expression implication of GDNF in ventral horn and associated remote cortex in rhesus monkeys with hemisected spinal cord injury
Objective(s): Glial cell line-derived neurotrophic factor (GDNF) can effectively promote axonal regeneration,limit axonal retraction,and produce a statistically significant improvement in motor recovery after spinal cord injury (SCI). However, the role in primate animals with SCI is not fully cognized. Materials and Methods:18 healthy juvenile rhesuses were divided randomly into six groups, obs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Anesthesia and analgesia
دوره 105 4 شماره
صفحات -
تاریخ انتشار 2007